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The convergence rate of modified AL
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1. Motivation

Lid driven cavity ⇒ Container ship

FEM ⇒ FVM

LBB satisfied ⇒ Stabilized

Reynolds = 102 (laminar) ⇒ Reynolds = 108 (turbulent)

Aspect ratio 1 ⇒ Aspect ratio 104

Square ⇒ Complex geometry (Ship hull)



2. Incompressible Navier-Stokes equations

∫
S

ρuu · n dS +

∫
S

pn dS −
∫
S

µeff(∇u +∇uT ) · n dS =

∫
Ω

ρb dΩ,∫
S

u · n dS = 0

(1)

I u: the velocity, p: the pressure, ρ: the constant density.

I µeff = µ+ µt

effective viscosity is the sum of the constant dynamic viscosity µ
and the variable turbulent eddy viscosity µt

I Ω ∈ R2 or 3 is a bounded domain with a surface S

u = g on SD , µ
∂u

∂n
− np = 0 on SN



Linear system

[
Q G
D C

] [
u
p

]
=

[
f
g

]
with A :=

[
Q G
D C

]
.

I Q: the diagonal blocks Qii correspond to the convection-diffusion
operator.

I D,G : the divergence and gradient matrices.
Dα = Gα on structured and unstructured grids.
Only on structured grids Dα = −DT

α ⇒ D = −GT as in FEM.

I C : stabilization matrix arising from the pressure-weighted
interpolation (PWI) methods.
C = Ddiag−1(Q)G − diag−1(Qii )Lp (Lp: Laplacian matrix)

I A: sparse and non-symmetric.



3. Block structured preconditioners

The block LDU decomposition of A is

A = LDU =

[
Q G
D C

]
=

[
I O

DQ−1 I

] [
Q O
O S

] [
I Q−1G
O I

]
,

S = C − DQ−1G is the Schur-complement matrix.

Block structured preconditioners PL and PU

PL = LD =

[
Q O

D S̃

]
, PU = DU =

[
Q G

O S̃

]
,

I solve the velocity subsystem with Q,

I solve the pressure subsystem with S̃ ≈ S .

How to find a spectrally equivalent and cheap approximation of S .



Block structured preconditioners

I PCD
Silvester, Elman, Kay, Wathen 2001, Elman, Tuminaro 2009

I LSC
Elman, Howle, Shadid, Shuttleworth, Tuminaro 2006

I SIMPLE
Patankar, Spalding 1972, Vuik, Saghir, and Boerstoel 2000,
Klaij and C. Vuik 2013

I Augmented Lagrangian
Benzi and Olshanskii 2006, Benzi, Olshanskii, and Wang 2011

I Overview
Elman, Silvester, and Wathen 2005, 2014, Benzi, Golub, and
Liesen 2005



4. The augmented Lagrangian preconditioner

System

[
Q G
D C

] [
u
p

]
=

[
f
g

]
is transformed into

[
Qγ Gγ

D C

] [
u
p

]
=

[
fγ
g

]
with Aγ :=

[
Qγ Gγ

D C

]

I Qγ = Q − γGW−1D, Gγ = G − γGW−1C , fγ = f− γGW−1g .

I γ > 0 and W are scalar and nonsingular matrix parameters.

I the Schur complement of Aγ is Sγ = C − DQ−1
γ Gγ .

Ideal AL preconditioner is based on the block DU decomposition of Aγ

PIAL =

[
Qγ Gγ

O S̃γ

]
,

where S̃γ denotes the approximation of Sγ .



The modified AL preconditioner

Qγ =

[
Q1 − γG1W

−1D1 −γG1W
−1D2

−γG2W
−1D1 Q1 − γG2W

−1D2

]
(coupling of GiDj(i 6= j))

Q̃γ =

[
Q1 − γG1W

−1D1 O
−γG2W

−1D1 Q1 − γG2W
−1D2

]
(no coupling of GiDj(i 6= j))

Replacing Qγ by its block lower-triangular part Q̃γ and substituting

Q̃γ into PIAL gives the modified AL preconditioner PMAL:

PMAL =

[
Q̃γ Gγ

O S̃γ

]
.



The new Schur approximation in the AL preconditioner

The novel approximation is based on:

Lemma
Assuming that all the relevant matrices are invertible, then the inverse of
Sγ is given by

S−1
γ = S−1(I − γCW−1) + γW−1,

where S = C − DQ−1G denotes the Schur complement of the original
system with A.
Proof: see [1]

[1] X. He, C. Vuik and C. Klaij. Block preconditioners for the incompressible

Navier-Stokes equations discretized by a finite volume method. Journal of Numerical

Mathematics, published online DOI: 2016.



The new Schur approximation in the AL preconditioner

Old option 1: W1 = γC + Mp and S̃γ old = C + γ−1Mp.

Choosing W1 = γC + Mp and substituting W1 into
S−1
γ = S−1(I − γCW−1) + γW−1, leads to

S−1
γ = (γ−1S−1Mp + I )(C + γ−1Mp)−1.

For large values of γ such that ‖ γ−1S−1Mp ‖� 1 we can approximate
Sγ by

S̃γ old = C + γ−1Mp.

Comment:

I W1 = γC + Mp is not a practical option since its inverse is needed
in the AL transformation.



The new Schur approximation in the AL preconditioner

Old option 2: W = Mp and S̃γ old = C + γ−1Mp.
Comments:

I The approximation S̃γ old is obtained if and only if W1 = γC + Mp

and large values of γ are chosen.

I However, W = Mp is close to W1 = γC + Mp only when γ is small.

I it is contradictory to tune the value of γ so that W and S̃γ old could
be simultaneously obtained.

[1] M. Benzi, M.A. Olshanskii, Z. Wang. Modified augmented Lagrangian
preconditioners for the incompressible Navier-Stokes equations. Int. J. Numer. Meth.
Fluids., 66:486-508, 2011.
[1] X. He, C. Vuik and C. Klaij. Block preconditioners for the incompressible
Navier-Stokes equations discretized by a finite volume method. Journal of Numerical
Mathematics, 2016.



The new Schur approximation in the AL preconditioner

New option: W = Mp and S̃−1
γ new = S̃−1

SIMPLE (I − γCM−1
p ) + γM−1

p .

Comments:

I Since Mp is a diagonal matrix with density multiplied with cell
volumes in FVM, it is trivial to obtain its inverse.

I The complexity of applying S̃γ new is focused on solving the system

with S̃SIMPLE .



Comparison between the AL and SIMPLE preconditioners

Implementation costs of the two Schur complement approximations in
the AL preconditioner and SIMPLE preconditioner

I Regarding the AL preconditioner, it is difficult to analytically
compare the complexity of solving the sub-systems with S̃γ new and

S̃γ old.

I Numerical experiments show that the number of Krylov subspace
iterations preconditioned by the AL preconditioner with S̃γ new is

much less than S̃γ old. This makes the new Schur complement
approximation more efficient and attractive.

I The complexity of solving the sub-systems with Qγ (Q̃γ) and S̃γ new

in the AL preconditioner is higher than Q and S̃γ in the SIMPLE
preconditioner, respectively.

I A reduced number of Krylov subspace iterations could pay off the
more complexity at each Krylov iteration and makes the AL
preconditioner with the new Schur complement approximation gain
over the SIMPLE preconditioner.



5. Numerical experiments

Fully turbulent flows are considered (Re = 107) on block-structured grids.

The grids are refined near the leading and trailing edge of the plate and
spread out in the wake of the plate.

Near the middle of the plate, the cells have an aspect ratio 1 : 104.

All experiments are carried out based on the blocks Q, G , D and C
obtained at the 30th nonlinear iteration with 80× 40 structured grids.

These blocks are generated by MARIN’s CFD software package

ReFRESCO and imported to Matlab.



The spectrum of the new Schur approximation S̃γ new

The following figures present ten smallest and largest eigenvalues of
P−1
IALAγ and P−1

MALAγ with the new Schur approximation S̃γ new.

We can see:

I the smallest eigenvalues are far away from zero and the spectrum of
eigenvalues is clustered. Such a distribution of eigenvalues is
favourable for Krylov subspace solvers and a fast convergence rate
can be expected.

I The value of γ could effect the distribution of eigenvalues. For
relative small values, e.g. γ = 0.01 and γ = 1.0 the effect is
moderate.

I It appears that the optimal value of γ, which leads to the most
clustered eigenvalues, is the same for both the ideal and modified
AL preconditioners, i.e., γopt = 1.0.



PIAL with S̃γ new

Figure : Ten smallest eigenvalues of P−1
IALAγ with S̃γ new and different

values of γ.
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PIAL with S̃γ new

Figure : Ten largest eigenvalues of P−1
IALAγ with S̃γ new and different

values of γ.
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PMAL with S̃γ new

Figure : Ten smallest eigenvalues of P−1
MALAγ with S̃γ new and different

values of γ.
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PMAL with S̃γ new

Figure : Ten largest eigenvalues of P−1
MALAγ with S̃γ new and different

values of γ.
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The convergence rate with the new Schur approximation

S̃γ new

The following figure presents the convergence rate of the Krylov subspace
solver preconditioned by the ideal and modified AL preconditioners with
the new Schur approximation S̃γ new.

We can see:

I This conforms the prediction that the new Schur approximation
S̃γ new produces the favourable feature for the Krylov subspace
solvers.

I The convergence rate varies with different values of γ and
γopt = 1.0 results in the fastest convergence. This again confirms
the prediction regarding the effect of values of the parameter γ.



The convergence rate with the new Schur approximation

S̃γnew

Figure : The convergence of GMRES (no restart) preconditioned by the

ideal and modified AL preconditioner with S̃γ new. The involved
sub-systems are solved directly.



The eigenvalues of the old Schur approximation S̃γ old

The following figures present ten smallest and largest eigenvalues of
P−1
MALAγ with the old Schur approximation S̃γ old.

We can see:

I The smallest eigenvalues are quite close to zero for all the tested
values of γ, which degrades the efficiency of the Krylov subspace
solver.



PMAL with S̃γ old

Figure : Ten smallest eigenvalues of P−1
MALAγ with S̃γ old and different

values of γ.

×10
-4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×10
-4

-6

-4

-2

0

2

4

6

ten smallest eigenvalues by modified AL preconditioner 

with the old Schur approximation when γ=1.0

×10
-5

2.2 2.22 2.24 2.26 2.28 2.3 2.32

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ten smallest eigenvalues by modified AL preconditioner 

with the old Schur approximation when γ=100.0

×10
-6

2.2 2.22 2.24 2.26 2.28 2.3 2.32

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ten smallest eigenvalues by modified AL preconditioner 

with the old Schur approximation when γ=1000.0



PMAL with S̃γ old

Figure : Ten largest eigenvalues of P−1
MALAγ with S̃γ old and different

values of γ.
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The convergence rate with the old Schur approximation

S̃γ old

The following figure presents the convergence rate of the Krylov subspace
solver preconditioned by the modified AL preconditioner with the old
Schur approximation S̃γ old.

We can see:

I The old Schur approximation leads to a very slow convergence.

I The new Schur approximation can significantly improve the
performance of the AL preconditioner in the turbulent case.



The convergence rate with the old Schur approximation

S̃γ old

Figure : The convergence of GMRES (no restart) preconditioned by the

modified AL preconditioner with S̃γ old. The involved sub-systems are
solved directly.
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Comparison between the augmented Lagrangian and
SIMPLE preconditioner

As follows the spectrum of eigenvalues by using the SIMPLE
preconditioner is given and compared to the ideal AL preconditioner with
the new Schur complement approximation S̃γ new.

We can see:

I The smallest eigenvalues are nearly the same by using these two
preconditioner.

I The SIMPLE preconditioner leads to a bigger ratio between the
largest and smallest magnitude of eigenvalues, which means that
the spectrum of eigenvalues is less clustered compared to the AL
preconditioner.



Comparison between the augmented Lagrangian and
SIMPLE preconditioner

Figure : Ten smallest and largest eigenvalues of P−1
IALAγ (top) with

S̃γ new (γopt = 1.0) and of P−1
SIMPLEA (down).
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Comparison between the augmented Lagrangian and
SIMPLE preconditioner

As follows the convergence rate by using the SIMPLE preconditioner is
given and compared to the ideal AL preconditioner with the new Schur
complement approximation S̃γ new.

We can see:

I The number of Krylov subspace iterations by applying the ideal AL
preconditioner with S̃γ new and γopt = 1.0 is around 140 and is
about 180 by employing the SIMPLE preconditioner.

I A faster convergence rate of the Krylov subspace solver is obtained
by applying the AL preconditioner.

I Taking into account the more complexity at each Krylov iteration, it
seems that the gain of the AL preconditioner in terms of the
number of iterations is not sufficient to take an advantage over the
SIMPLE preconditioner on this benchmark.



Comparison between the augmented Lagrangian and
SIMPLE preconditioner

Figure : The convergence of GMRES (no restart) preconditioned by the

ideal AL preconditioner with the new Schur approximation S̃γ new and
the SIMPLE preconditioner. The involved sub-systems are solved directly.
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6. Conclusions

I the proposed new Schur approximation makes the AL preconditioner
applicable in the turbulent cases with variable viscosity.

I The convergence and the spectrum of the ideal and modified AL
preconditioner with the new Schur approximation are close for γ
values around 1.

I In all experiments it appears that the choice γ = 1 is optimal.

I The convergence and efficiency of the modified AL preconditioner
with the new Schur approximation and the SIMPLE preconditioner
are comparable.
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